Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study the rebound of drops impacting non-wetting substrates at low Weber number (We) through experiment, direct numerical simulation and reduced-order modelling. Submillimetre-sized drops are normally impacted onto glass slides coated with a thin viscous film that allows them to rebound without contact line formation. Experiments are performed with various drop viscosities, sizes and impact velocities, and we directly measure metrics pertinent to spreading, retraction and rebound using high-speed imaging. We complement experiments with direct numerical simulation and a fully predictive reduced-order model that applies natural geometric and kinematic constraints to simulate the drop shape and dynamics using a spectral method. At low We, drop rebound is characterised by a weaker dependence of the coefficient of restitution on We than in the more commonly studied high-We regime, with nearly We-independent rebound in the inertio-capillary limit, and an increasing contact time as We decreases. Drops with higher viscosity or size interact with the substrate longer, have a lower coefficient of restitution and stop bouncing sooner, in good quantitative agreement with our reduced-order model. In the inertio-capillary limit, low-We rebound has nearly symmetric spreading and retraction phases and a coefficient of restitution near unity. Increasing We or viscosity breaks this symmetry, coinciding with a drop in the coefficient of restitution and an increased dependence on We. Lastly, the maximum drop deformation and spreading are related through energy arguments, providing a comprehensive framework for drop impact and rebound at low We.more » « lessFree, publicly-accessible full text available September 25, 2026
-
Thin-film flow down a fibre exhibits rich dynamics and is relevant to applications such as desalination, fibre coating and fog harvesting. These flows are subject to instabilities that result in dynamic bead-on-fibre patterns. We perform an experimental study of shear-thinning flow down fibres using 20 different xanthan gum solutions as our working liquid. The bead-on-fibre morphology can be oriented either symmetrically or asymmetrically on the fibre, and this depends upon the surface tension, fibre diameter and liquid rheology, as defined by the Ostwald power-law index. For highly shear-thinning liquids, it is possible for the pattern to be complex and exhibit simultaneously both asymmetric large beads and symmetric small beads in the isolated and convective flow regimes. We quantify the transition between flow regimes and bead dynamics for the asymmetric morphology, and compare with Newtonian flow, as it depends upon the experimental parameters. Finally, the dimensionless bead frequency is shown to scale with the Bond number for all of our experimental data (symmetric and asymmetric).more » « less
-
Surfactants are often added to particle suspensions in the flow of Newtonian or non-Newtonian fluids for the purpose of reducing particle-particle aggregation and particle-wall adhesion. However, the impact on the flow behavior of such surfactant additions is often overlooked. We experimentally investigate the effect of the addition of a frequently used neutral surfactant, Tween 20, at the concentration pertaining to microfluidic applications on the entry flow of water and three common polymer solutions through a planar cavity microchannel. We find that the addition of Tween 20 has no significant influence on the shear viscosity or extensional flow of Newtonian water and Boger polyethylene oxide solution. However, such a surfactant addition reduces both the shear viscosity and shear-thinning behavior of xanthan gum and polyacrylamide solutions that each exhibit a strong shear-thinning effect. It also stabilizes the cavity flow and delays the onset of flow instability in both cases. The findings of this work can directly benefit microfluidic applications of particle and cell manipulation in Newtonian and non-Newtonian fluids.more » « less
An official website of the United States government
